

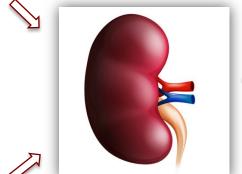
Kidney Diseases in Liver Cirrhosis

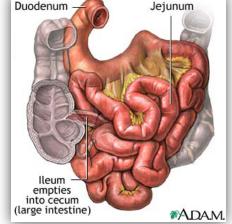
Prof. Marek Hartleb

Department of Gastroenterology and Hepatology Medical University of Silesia Katowice, Poland

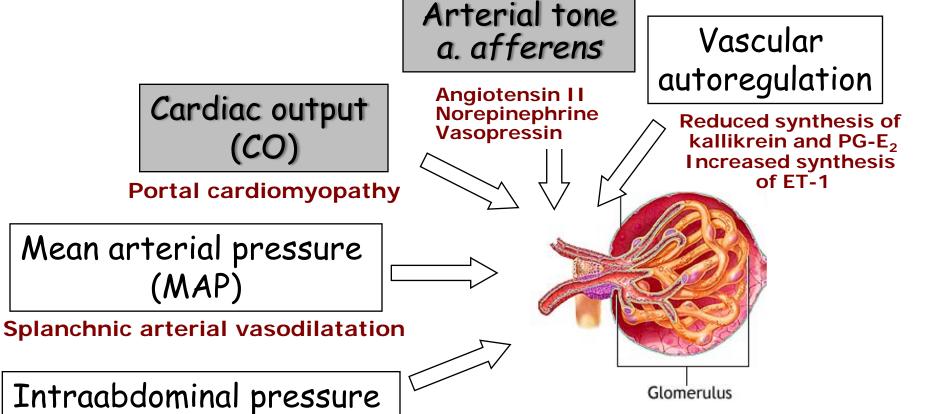
Pathomechanism of AKI in cirrhosis

Effective hypovolemia


Noradrenaline Angiotensin Vasopressin



Duodenum



Vasodilatation

Hypoperfusion Hypercreatinemia (AKI) Sodium and water retention

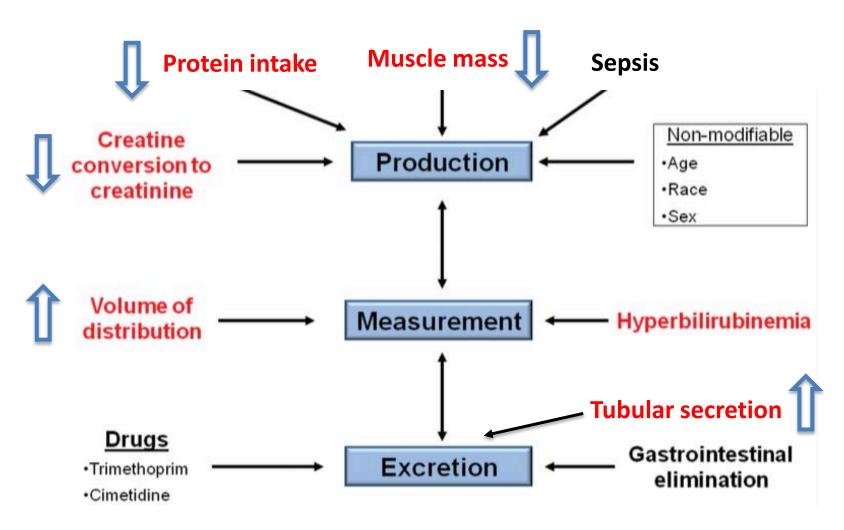
Physiological factors regulating renal perfusion/function

Abdominal Compartment Syndrome (ascites)

(IAP)

Definition of Acute Kidney Injury (AKI) according to AKI Network (AKIN)

Stage	Increase of creatinine level / 48 hrs		
1	↑ 0.3 mg/dl OR ↑ 1.5-2 x baseline		
2	≥ 2-3 x baseline		
3	↑ 0.3 mg/dl if baseline <u>></u> 4mg/dl OR > 3 x baseline OR If renal replacement therapy was started		


Modified by IAC

Known or presumed to have occurred within the prior 3 months

Single value of sCr is not sufficient to diagnose AKI

Extra-renal influences on creatinine levels in cirrhosis

Relationship between serum creatinine level (S_{cr}) and GFR

Dennen P, Douglas I, Anderson R,: Acute Kidney Injury in the Intensive Care Unit: An update and primer for the Intensivist. *Critical Care Medicine* 2010; 38:261-275.

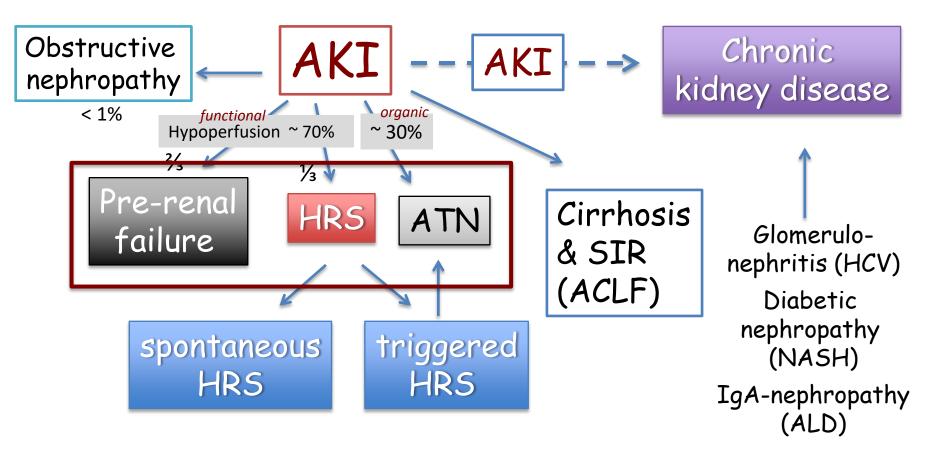
Creatinine > 1.5 mg/dl in cirrhosis

11% GI bleeding

34% Spontaneous bacterial peritonitis

17% Other bacterial infection

40-49% Critically ill patients hospitalized in ICU


24% in outpatients with cirrhosis within one-year of the first episode of ascites

26-47% in-patients (mostly AKIN stage 1)

Cardenas A et al. Hepatology 2001; 34: 671 Carvalho GC et al. Ann Hepatol 2012; 11:90 Fagundes et al. J Hepatol 2013; 59: 474 Piano S et al. J Hepatol 2013; 59: 482

Hepatorenal diseases

HRS: Hepatorenal syndrome; ATN: acute tubular necrosis,

ACLF: acute-on-chronic liver failure

Portal (sinusoidal) hypertension

Mesenteric/systemic vasodilalation

Bacterial infection
Vasodilalators (drugs)
Aggressive paracentesis

-

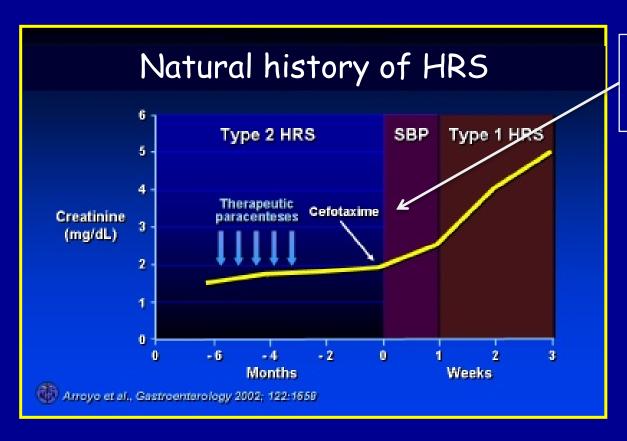
Effective hypovolemia

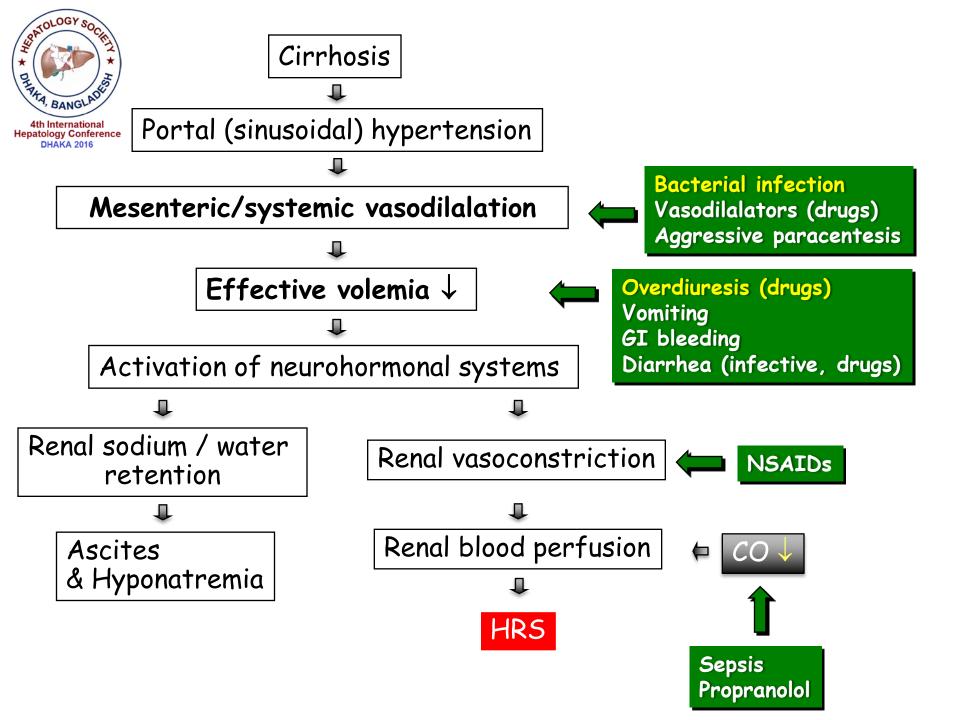
Activation of neurohormonal systems

Renal sodium / water retention

Ascites & Hyponatremia

Renal vasoconstriction


Renal blood perfusion

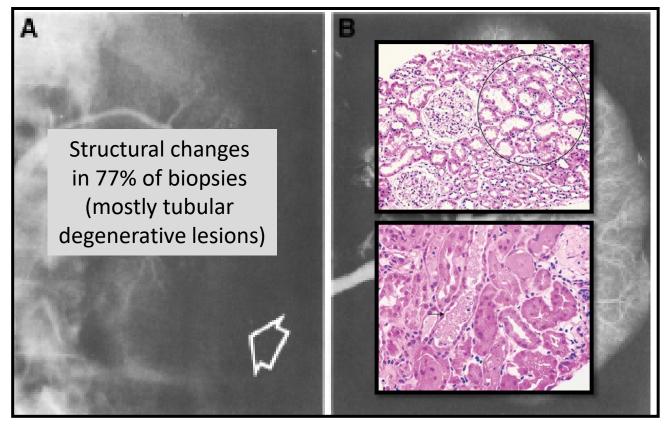

HRS

Typical scenario: Diuretic-resistant ascites → SBP → HRS-1

Antibiotic & albumin day 1 and 3

Hepatorenal syndrome Diagnostic criteria

- Diagnosis of AKI according to IAC-AKIN criteria
- Cirrhosis & ascites
- No improvement (sCr < 1.5 mg/dl) after at least 2 days of diuretic withdrawal and plasma volume expansion with albumin 1g/kg/24 h (max. 100 g)
- Absence of shock (septic or hemorrhagic)
- Absence of parenchymal kidney disease (urine protein
 <500 mg/24 h and/or erythrocytes < 50 hpf)
- No current or recent use of nephrotoxic agents

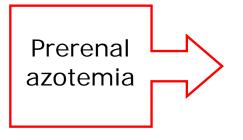


Hepatorenal syndrome (HRS)

In HRS the pathology exclusively regards the renal vascular system

End-stage cirrhosis

Post-mortem



Acute kidney injury

- Diuretics
- Diarrhea

- SBP (other infection)
- Paracentesis

- Unrecognized AKI
- Septic shock
- Hemorrhagic shock
- Nephrotoxic drugs (NSAIDs, aminoglycosides)
- Radiological contrasts

Acute tubular necrosis

Degree of renal hypoperfusion

 $U_{Osm} > 500 \text{ mOsm/kg}$ FENa < 1% $U_{Osm} > 500 \text{ mOsm/kg}$ FENa < 1% $U_{Osm} < 350 \text{ mOsm/kg}$ FENa > 2%

Urine exam

No casts

<u>Urine exam</u>

No casts

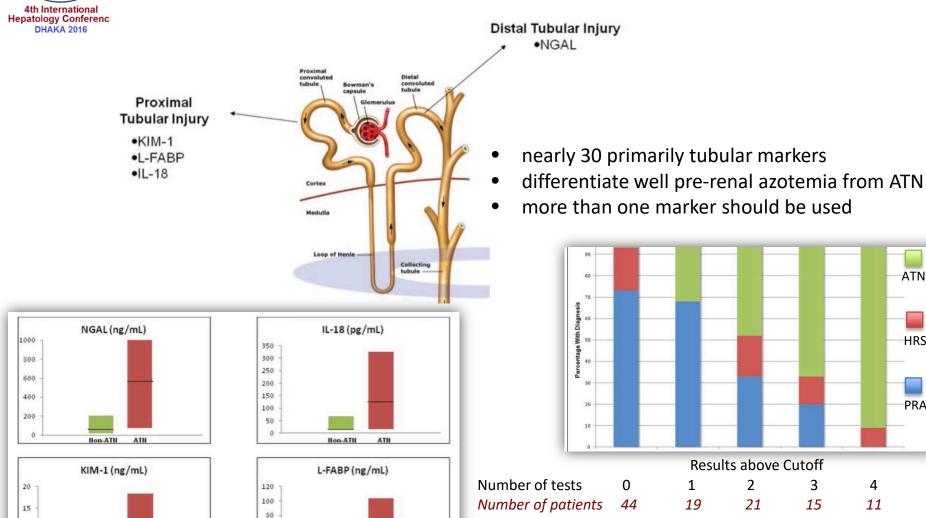
Urine exam

Casts granular/epithelial

Volume expansion

→ sCr normalization

Volume expansion


→ No sCr normalization

Renal biopsy?

10

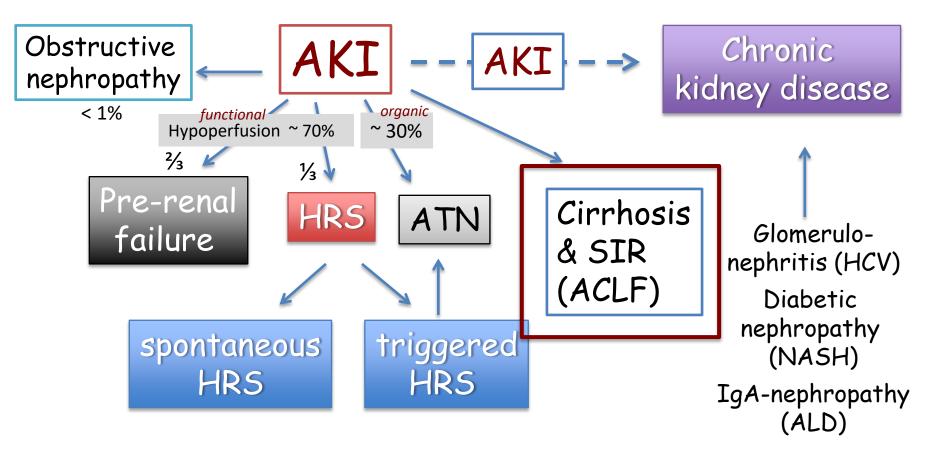
Biomarkers of tubular necrosis

60 40 20

Belcher JM et al. Hepatology 2014; 60: 622

ATN

HRS

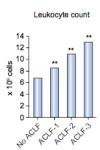

PRA

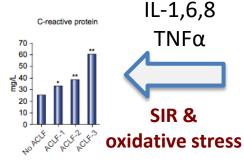
4

11

Hepatorenal diseases

HRS: Hepatorenal syndrome; ATN: acute tubular necrosis,


ACLF: acute-on-chronic liver failure



AKI in acute-on-chronic liver failure (ACLF)

Multiorgan failure

- Kidney
- Cerebral
- Circulatory
- Respiratory
- Coagulation

Degree of SIR correlates with number of organ failures

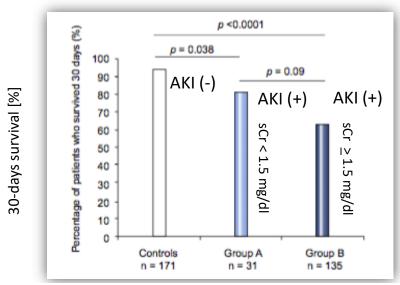
Liver cirrhosis +

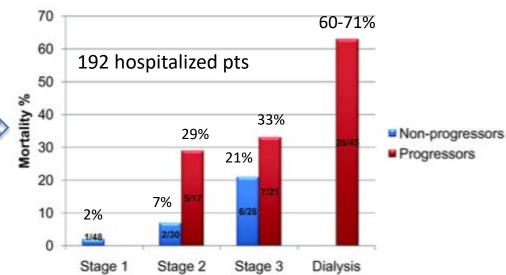
- alcoholic hepatitis
- sepsis
- reactivation of HBV infection
- acute hepatitis A or E
- PVT
- ischemia
- drug-induced liver injury

•	Anothe	r mechanism	of AKI
	(≠hypo	perfusion)	

 Another treatment (albumin, PTX, N-acetylocysteine??)

Organ system	Score = 1	Score = 2	Score = 3
Liver, bilirubin (mg/dl)	<6	6-≤12	>12
Kidney, creatinine (mg/dl)	<2	2-<3.5	≥3.5 or renal replacement
Brain, grade (West-Haven)	0	1-2	3-4
Coagulation, INR	<2.0	2.0-<2.5	≥2.5
Circulation, MAP (mmHg)	≥70	<70	Vasopressors
Respiratory PaO ₂ /FiO ₂	>300	≤300 and >200	≤200
or SpO ₂ /FiO ₂	>357	>214 and ≤357	≤214

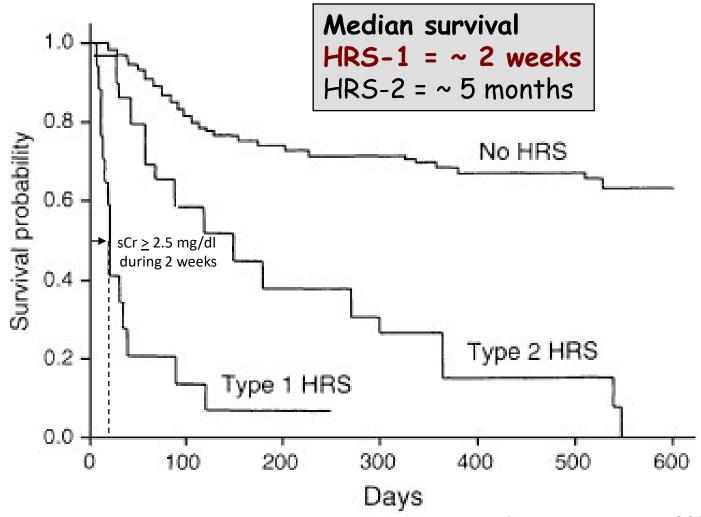



AKI in cirrhosis - prognosis

In patients with sCr > 1.5 mg/dl

- higher probability of being transferred to intensive care unit
- longer hospitalization
- higher short-term mortality

Survival is influenced not only by the stage of renal dysfunction but also by the progression on follow-up



Belcher JM et al. Hepatology 2013; 57:753 Wong F et al. J Hepatol 2015; 62: 739

Survival of patients with liver cirrhosis without HRS, with HRS-2 and HRS-1

Gines i wsp. Lancet 2003, 362, 1819.

General management principles in case of increase of creatinine level

✓ Withdrawal of diuretics

Withdrawal of potentially nephrotoxic drugs, vasodilators or NSAIDs (review drug chart including OTC drugs)

✓ Plasma volume expansion

Albumin iv 1 g/kg/24 hr (max. 100 g)* or blood in case of GI bleeding (re-evaluation after 2 days)

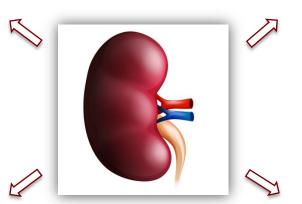
- ✓ Antibiotic (bacterial infection?)
- ✓ Urine analysis (leukocytes?, casts?, erythrocytes?)
- ✓ Ultrasound of kidneys

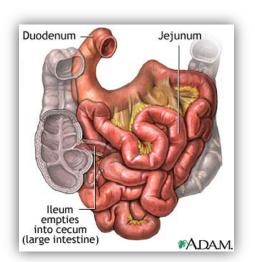
^{*} monitored by central venous pressure

Treatment of AKI in cirrhosis (pre-renal, HRS, ATN)

Effective hypovolemia

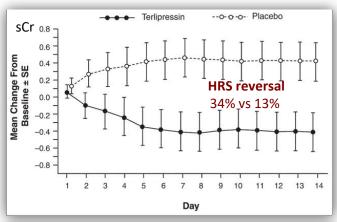
Norpinephrine Angiotensin Vasopressin

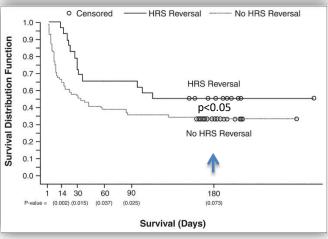




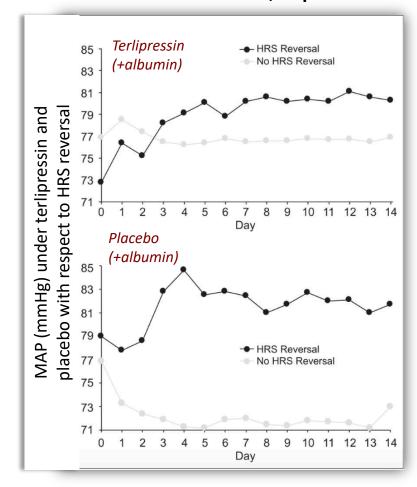
Volume expander (albumin)

Splanchnic vasoconstrictor (terlipressin, norepinephrine, octreotide)





HRS Treatment terlipressin & albumin


Efficacy of terlipressin in HRS-1:

HRS reversal, survival

Single predictor of HRS-1 reversal: was baseline serum creatinine, importance of MAP

Boyer TD et al. J Hepatol 2011; 55: 315

Acute Kidney Injury Treatment

Degree of renal hypoperfusion

Vascular system repletion (albumin, crystalloids)

Vasoconstrictor & albumin

Renal replacement therapy

No response ~ 50%

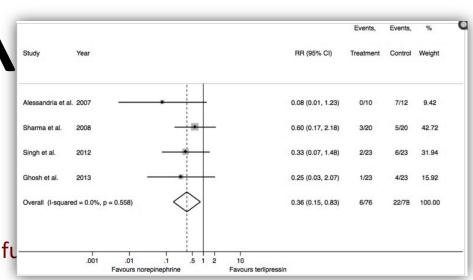
- Normal perfusion (e.g. ACLF)
- 2. Chronic renal disease
- 3. Severe injury (ATN)

Which vasoconstrictor is the best?

Meta-analysis: 4 studies; 154 patients with HRS

Norepinephrine

(n=76)


RESULTS

Reversal of HRS: 44/76 (**74%**)

30-day mortality: 36/76 (47%)

Side effects: 6/76 (**7.9%**)

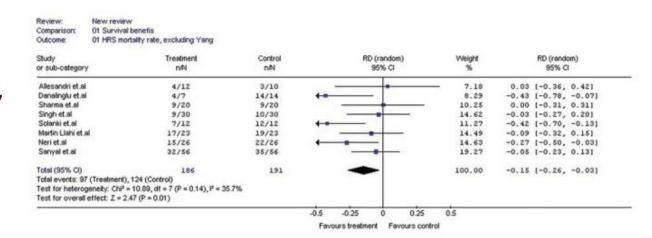
Norepinephrine requires continuous i.v. infu

Nassar Junior AP et al. PLoS One, 2014, 9

RCT: 49 patients with HRS

RESULTS

Reversal of HRS: 6/21 (28.6%) 19/27 (70.4%) p=0.01



HRS Treatment terlipressin & albumin

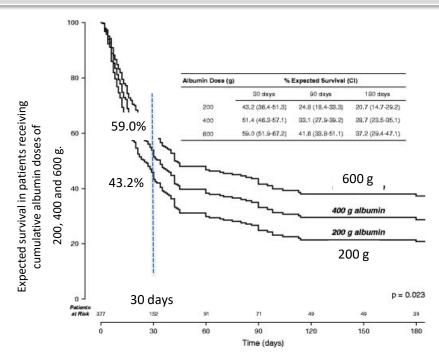
Meta-analysis: 8 RCTs; 378 pts HRS-1

All causes mortality (3 months)

Mortality due to HRS alone (3 months)

Response to treatment: 40-60% (mean recovery time 7 days) Early relapse after response: 5-10%

Treatment role of albumin


Non-randomized study

TER & ALB vs TER alone

Reversal of HRS: 77% vs 25%

Ortega R et al. Hepatology 2002; 36: 941

- Meta-analysis of 8 clinical studies comprising 547 patients with HRS-1
- Pooled reversal of HRS was 49.5%
- Neither survival nor reversal of HRS was influenced by vasoconstrictor type/dose or treatment duration

Salerno F et al. BMC Gastroenterology 2015; 15: 167

Hepatorenal syndrome Management of non-responders to TER & ALB

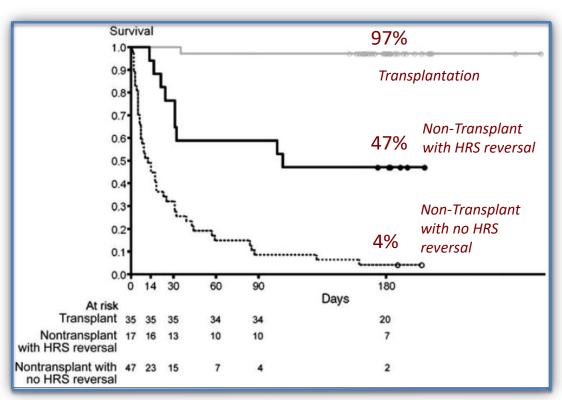
Dialysis

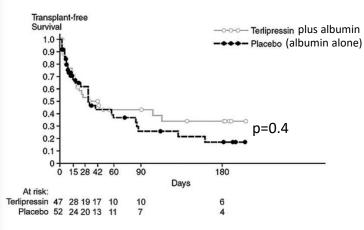
Conclusions: Justified as bridge to liver transplantation or while awaiting reversal of an acute liver failure or ACLF (e.g., alcoholic hepatitis).

Classical indications: Severe volume overload, metabolic acidosis, hyperkalemia, symptomatic uremia

• Extracorporeal liver assist devices: Helios (FPSA) and MARS

Conclusions: Improve encephalopathy, sCr and bilirubin level but do not improve short-term survival


TIPS


Conclusions: reduces portal hypertension and ascites, effect on central volemia, improves indirectly renal function **but** patients with AKI too sick to undergo TIPS (encephalopathy)

Liver transplantation (LT) HRS-1

99 pts with HRS-1 treated with **TERLIPRESSIN** or **PLACEBO** 35% underwent LT

Key points

- Patients with liver cirrhosis have natural tendency to develop AKI that is assoc. with poor prognosis
- Definition of HRS-1 has changed according to AKIN, but still is based on exclusion criteria and creatinine level that is imperfect indicator of renal function in cirrhosis
- HRS is not the unique, and probably also not the commonest form of AKI in patients with cirrhosis
- AKI is potentially reversible disease but type of therapy depends on type of renal failure

Key points

- The standard treatment of HRS is vasoconstrictor combined with albumin (+ withdrawal of diuretics)
- The goal of therapy is to reverse in a very short time window the kidney failure before it leads to irreversible structural renal damage and death
- An estimated 40 to 60 % of patients respond to the combination therapy with reversal of kidney failure
- HRS-1 signals the need for immediate LT, which is the only definitive treatment

